Geophysical Research Letters’

RESEARCH LETTER
10.1029/2025GL118361

Key Points:

e Microfluidic visualizations reveal CO,
hydrate formation and growth in
unsaturated porous media

e In unsaturated media, hydrate crystals
preferentially grow in narrower paths
and accelerate toward the local water
pockets

e Explosive crystallization emerges
when a growing crystal contacts a
water pocket, enabling long-range hy-
drate propagation

Supporting Information:

Supporting Information may be found in
the online version of this article.

Correspondence to:

L. Jiang, K. Xu and Y. Song,
lanlan@dlut.edu.cn;
kexul989 @pku.edu.cn;
songyc@dlut.edu.cn

Citation:

Liu, Q., Hassanpouryouzband, A., Du, Y.,
Jiang, L., Xu, K., Lv, W., & Song, Y.
(2025). Reactive crystallization in
unsaturated porous media. Geophysical
Research Letters, 52, €2025GL118361.
https://doi.org/10.1029/2025GL118361

Received 24 JUL 2025
Accepted 26 OCT 2025

Author Contributions:
Conceptualization: Qingbin Liu,
Aliakbar Hassanpouryouzband, Yilin Du,
Lanlan Jiang, Ke Xu, Yongchen Song
Data curation: Qingbin Liu,

Aliakbar Hassanpouryouzband, Yilin Du,
Weifeng Lv

Funding acquisition: Qingbin Liu,
Yilin Du, Lanlan Jiang, Ke Xu,
Yongchen Song

Investigation: Qingbin Liu,

Aliakbar Hassanpouryouzband, Yilin Du,
Weifeng Lv

Methodology: Qingbin Liu,

Aliakbar Hassanpouryouzband, Yilin Du,
Lanlan Jiang, Ke Xu, Yongchen Song

© 2025 The Author(s).

This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial License,
which permits use, distribution and
reproduction in any medium, provided the
original work is properly cited and is not
used for commercial purposes.

'.) Check for updates

A n . l ADVANCING
nu EARTH AND

-~ SPACE SCIENCES

'

Reactive Crystallization in Unsaturated Porous Media

Qingbin Liu' ©©, Aliakbar Hassanpouryouzband®
Weifeng Lv*, and Yongchen Song'

, Yilin Du! @, Lanlan Jiang1 , Ke Xu® ©,

'Key Laboratory of Ocean Energy Utilization and Energy Conservation of the Ministry of Education, School of Energy and
Power Engineering, Dalian University of Technology, Dalian, China, >School of Geosciences, University of Edinburgh,
Grant Institute, Edinburgh, UK, *Department of Energy and Resources Engineering, College of Engineering, Peking
University, Beijing, China, *State Key Laboratory of Enhanced Oil & Gas Recovery, Beijing, China

Abstract Crystal nucleation and growth reshape the mechanical, transport and reactive properties in
subsurface porous media. We visualize CO, hydrate formation and growth in a microfluidic unsaturated porous
medium and uncover novel multiscale dynamics: (a) hydrate crystals preferentially grow in narrower paths and
seal low-permeability regions, despite lower surface energy in wider pathways; (b) explosive crystallization
emerges at water-gas interface when growing crystals touch water pockets, that enables efficient hydrate
propagation across disconnected water clusters. These observations are theoretically rationalized. We therefore
provide an interpretation of field observations of early stage hydrate enrichment in low permeability zones, and
discover a new nucleation propagation mechanism. The mechanism may also emerge in other reactive
crystallization in unsaturated media.

Plain Language Summary In efforts to securely store CO, underground, one promising method is to
trap it as solid hydrates. However, how these hydrates actually grow and reshape flow pathways deep
underground remains poorly understood. We observe CO, hydrates formation and growth inside an unsaturated
microfluidic porous medium, and reveal the microscopic diffusion-driven dynamics. Accordingly, we
rationalize field observation that hydrate preferential growth in low-permeability formations, and discover a
novel mechanism of nucleation spreading over pores.

1. Introduction

Crystals nucleation and growth commonly emerge in subsurface media, as results of changes in ambient
composition, temperature, pressure, or chemical reaction (De Yoreo et al., 2015; Dobberschiitz et al., 2018;
Godinho et al., 2016; Ma et al., 2023; Righter & Downs, 2001). Examples include permafrost freezing (Creel
et al., 2024; Ma et al., 2023; Righter & Downs, 2001), CO, sequestration as carbonate minerals in deep stratum
(Boot-Handford et al., 2014; Cao et al., 2007; DePaolo & Cole, 2013; Guida et al., 2017; Seyyedi et al., 2020), salt
precipitates in groundwater (Clarke et al., 2022; Ji et al., 2025; Shokri-Kuehni et al., 2017) or after engineering
gas storage (Braid et al., 2024; Falcon-Suarez et al., 2020; He et al., 2019; Sokama-Neuyam et al., 2023; Yan
et al., 2025), deposition of bitumen molecules during oil recovery (Abedini et al., 2011; Doryani et al., 2018;
Schultz et al., 2023), and gas hydrates formation (Chong et al., 2016; Liu et al., 2025; Pecher et al., 2025).
Crystallization modulates the porous morphology, that alters permeability (Beckingham, 2017; Chen et al., 2024;
Nooraiepour et al., 2018), distorts flow and transport paths (Chagneau et al., 2015), generates internal stresses
(Scherer, 2000), or even induces microcracks that destabilize the stratum (Espinosa-Marzal & Scherer, 2010).

In porous media, crystallization from multiphase/fluid is governed by the dynamics at fluid-fluid/solid interfaces
by which spatially segregate reactive components. For example, gas hydrate formation in subsurface is at the
interface of gas and water (Gu et al., 2025; Sloan, 2003; Xu et al., 2024); salt precipitation in flow-through drying
is highly regulated by the dynamic brine-gas interface evolution (Li et al., 2024); additionally, in mineralization
trapping for CO, sequestration, CO, dissolves in formation water and interacts with the rock (Seyyedi
etal., 2020). While crystallization in a single, homogeneous phase can be described by classical Lifshitz-Slyozov-
Wagner (LSW) theory, the anisotropic and heterogeneous distribution of phases in unsaturated porous media
defies such uniform assumptions (Budke et al., 2009; Svoboda et al., 2022). There is still no consensus on the
morphology and kinetics of crystallization in unsaturated porous media within multiphase fluid systems.

In this study, we visualize the growth of CO, hydrate crystals within a microfluidic porous medium. We first
perform continuous CO, injection into a water-saturated porous medium until achieving irreducible water
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saturation, and then maintain system closure with constant gas pressure at 3.5 MPa. We capture the nucleation,
growth and ripening of hydrates in situ and visualize local crystallization kinetics and crystals' spatial distribution
evolution in unsaturated media. We expect to provide a benchmark for future multi-scale modeling studies on
subsurface geochemical and reactive transport processes.

2. Materials and Methods
2.1. Materials

Carbon dioxide (Dalian Special Gases Co., Ltd., China, with a purity of 99%) is used as the gas source. Nitrogen
(Dalian Special Gases Co., Ltd., China, with a purity of 99%) is used for confining pressure. Deionized water is
used in the hydrate formation processes. Calcium chloride (Shanghai Macklin Biochemical Technology Co., Ltd.,
China) is used to prepare salt water.

2.2. Methods

Observations of hydrate phase transitions are performed in a microfluidic system (Figure S1 in Supporting In-
formation S1). The microfluidic chip is custom-designed and fabricated based on micro-CT scans of actual rock
cores. After acquisition, the slice images are refined and converted into the chip layout, which is then etched
50 pm deep. The microfluidic chip is placed in a high-pressure chamber for high-pressure operations. The
experimental setup includes fluid injection module, temperature and pressure control module, and data acqui-
sition module. Fluid injection is performed using an ISCO pump (260D, Teledyne Isco Inc., Lincoln, NE, USA)
and a high-precision syringe pump (LC-3060, Chin-Fine Technology). The entire experimental system is
temperature-controlled using a thermostatic bath (300F, JULABO), while pressure is maintained by the ISCO
pump in conjunction with a back-pressure valve. A CCD camera (QSI6120WS, ATIK), coupled with a micro-
scope (12X Zoom, NAVITAR), is used to real-time record the hydrate growth behavior inside the microfluidic
chip. Pressure sensors are installed at the inlet and outlet of the microfluidic chip to monitor the pressure at both
ends of the chip. The contact angle of the etched pores is measured at 32.17°, confirming their hydrophilic nature
(Figure Sle in Supporting Information S1).

The main experimental procedures can be summarized as follows. First connect the piping and check for leaks,
then evacuate the entire system for 1h to eliminate interference from remaining gases. Nitrogen gas with a stable
pressure of 4.0 MPa is injected into the confining pressure device, to ensure that the confining pressure is higher
than the experimental pressure. The system temperature is set at 275.15 K. The backpressure is set at 3.5 MPa,
while the micromodel is gradually saturated with water and pressurizes to the same level. Maintain the back
pressure of 3.5 MPa. Carbon dioxide gas with an initial pressure of 3.6 MPa is injected into the micromodel to
displace part of the water. After that, set the pressure to 3.5 MPa. And then, waiting for the hydrate to form.

3. Results and Discussion
3.1. Overview of Hydrate Crystal Nucleation and Growth

Prior to crystallization, water occupies 32.8 vol % of the pore space, residing predominantly in concave “corner”
and dead end pores in accordance with the well-established preference of wetting fluids for high-specific area
regions (Gao et al.,, 2022; Helland & Jettestuen, 2016; Moebius & Or, 2014; Stocker & Hosoi, 2004; Wu
et al., 2018; Yang et al., 2013), as shown in Figure 1a. During crystal formation and growth, the residual water
pockets correspondingly shrink as compensation (Figure 1b and Figure S2 in Supporting Information S1). Water
saturation decreases dramatically from 32.8% to 27.0% within 12 min, and then decreases by 13.5% in the
following 48 hr, corresponding to rapid nucleation and slow growth of hydrates.

In individual pores and channels, hydrate evolution conforms to classical nucleation theory: nuclei appear sto-
chastically along gas-water interfaces of some water pockets, forming a thin film that can enclose an entire water
pocket within 1 min (Figure 1a). Subsequently, growth proceeds concurrently into both gas and liquid phases
(Text S1 in Supporting Information S1), with discrete crystals extending into the gas and clustered aggregates
developing in the liquid. As expected, in the gas phase, local coarsening causes some nuclei to vanish while others
continue growing until a single crystal outcompetes its neighbors. Crystals growing into gas phase results in major
modification of pore space and gas flow path, which would be the focus of this work.
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Figure 1. Overview of the hydrate crystals growth. (a) Snapshot of the global status of the hydrate growth process. Hydrate
crystals in the dashed red circle block the channel. (b) Water saturation and hydrate saturation over time. S, represents
hydrate saturation. (c) Crystal length distribution for different pore widths at 60th h. Crystal aspect ratio is represented as dots
of different shapes with different colors. Solid dots represent crystals occupying the entire pore channel. Points below the
yellow line indicate crystal lengths shorter than the channel width. The excess of crystal length over the pore width is likely a
result of inclined growth within the confinement.

Globally, hydrate crystals are more aggregated in narrow channels, with over 65.6% of crystals forming in pore
throats narrower than 400 pm (Figure 1c), even though these channels constitute only 24.3% of the pore volume.
This striking preference contrasts with classical bubble ripening in porous media, where bubbles in small pores
are consumed to feed bubbles' growth in larger pores, which reduces total surface free energy (Mehmani &
Xu, 2022a, 2022b).

3.2. Local Inter-Seeds Competition

Numerous micro-crystals form at the very beginning, and competitive interplay among crystals and water pockets
are observed. Two representative and synchronized hydrate growth patterns at pore interfaces are shown in
Figure 2.

Figure 2a shows typical competitive growth in a micro-channel with average pore width exceeding 400 pm and
initial liquid cluster spanning 4.8 x 10* pm® Crystal growth occurs in 3 phases: (a) in the first 8 hr, multiple
crystals co-develop slowly, and 3 major crystals survive with the growing facet of crystal #1 right toward the
nearby water pocket; (b) after 8 hr, growth of crystal #1 dominates, and quickly accelerates until the crystal
touches the water pocket, while crystal #2 and crystal #3 keep slowly growing (Figure 2b); (c) when crystal #1
touches the water pocket, explosive crystallization emerges on water pocket surface, and growth of crystal #2 and
crystal #3 is terminated.

Figure 2c shows another typical synchronized growth of multiple dominant crystals within a narrow long channel
with two water pockets along a concave boundary. After 2 hr, crystal #4, crystal #5 and crystal #6 that nucleate on
the same side of the channel survive. In the following competition, crystal #5, which sits at the narrowest throat
along the channel, dominates over its neighbors and grow toward the other side with water pocket (Red box in
Figure 2d), where the presence of a liquid film can be identified (Figure S3 in Supporting Information S1). When
crystal #5 grows close or even touches the solid wall, the growth rate reduces as the high-energy facet does not
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Figure 2. Simultaneous growth of multiple crystals in the pore. (a, ¢) Snapshots of multiple hydrate crystals growth.
(b) Quantification of crystal area in panel (a). The line color corresponds to the crystal color separately. (d) Quantification of
crystal area in panel (c). The line color corresponds to the crystal color separately.

expose to the vapor anymore, and neighboring crystals (crystal #4 and crystal #6) are allowed to re-start growth
(Green box in Figure 2d). By this time, crystal #5 has effectively blocked the throat.

3.3. Water Vapor Transport Regulates Single Crystal Growth

Although the global growth rate of hydrates decelerates, growth of a local dominant crystal accelerates in
presence of local water pocket. To illustrate this behavior, we track the area evolution of four representative
crystals situated in distinct pore geometries (Figure 3a). With sufficient water, all crystals exhibit progressive
acceleration (Figure 3b). Growth is terminated when the water source disappears (water depletion for crystal #7
and water-to-hydrate conversion for crystal #8), or when the growing facet of the crystal contacts the water pocket
and induces further explosive nucleation on its surface (crystal #9 and crystal #10).

The formation and accelerating growth of crystals toward local water pocket imply that hydrate formation in
porous media is directed by residual water, and limited by mass transfer of water vapor through gas phase from
residual water pocket. As high energy crystal facets consume nearby vapor, they create a local pressure minimum
that induces a vapor pressure gradient and sustains vapor flux from adjacent water pockets. Growth of a typical
crystal can be divided into two stages:

1. Formation of local dominant crystal. At the very beginning, many nucleates emerge with different distance to
water pocket and different facing directions of growing facet. On one hand, nucleates closer to the water
pocket have lower diffusion distance for water and thus get more sufficient water vapor supply; on the other
hand, nucleates with growing facet (high-energy facet) directing to the water pocket can reduce water vapor
transfer distance faster than its neighbors. As a result, a crystal that have smallest distance to water pocket and
growing direction right toward the water pocket finally dominates, as shown in abovementioned examples.

2. Accelerating dominant crystal growth. Once a dominant crystal is selected, its further growth would reduce the
distance between the growing facet and the water pocket, that results in an accelerating growth rate (Mul-
lin, 2001; Sloan, 1998; Titze et al., 2015; Figure 3c). Assuming that only the high-energy facet grows, the
kinetics should follow:

dA 1 W

dr - x

where A denotes the area of the crystal and x denotes the distance between the crystal front and the target water
source. This correlation is well-supported by experimental measurements (Figure 3d). Equation 1 describes the
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Figure 3. Study on the growth rate of hydrate crystals. (a) Snapshot of hydrate crystal growth. (b) Variation of crystal area
with time. (c) Diagram of the mechanism of crystal growth. (d) Relationship between the derivative of the crystal area curve
and 1/x.

approximate relationship within the intermediate x interval. However, this model becomes inapplicable as x
approaches 0, where saturation effects must be accounted for. This limitation arises from the transition in the rate-
limiting step of crystal growth, which is generally governed by mass transfer but shifts to the crystallization
reaction when the crystal is sufficiently close to the water source. In this regime, the interfacial reaction rate
becomes the rate-limiting step, and further reduction in x does not significantly enhance the growth rate. Under
these conditions, the reaction kinetics are expected to follow:

dA 1
—
dt a+x

@

where a is a constant associated with the crystallization reaction process, likely related to the thickness of the
reaction boundary layer. However, our experimental sampling resolution precludes a definitive determination of
a, as we lack data in the requisite small-x interval. Since this reaction-dominated regime is not the primary focus
of our work, we do not explore it further.

Complementary ice crystal growth experiments (Text S2 in Supporting Information S1) reveal similar behavior,
underscoring the broad applicability of these kinetic mechanisms. This accelerating crystal growth is also sup-
ported by Raman spectroscopic experiments (Ou et al., 2016).

3.4. Preferential Crystal Growth in Narrow Channels

It is well accepted that discrete phases in porous media prefer to emerge in larger pores or wider channels, to
minimize surface energy (Emmanuel et al., 2010; Poonoosamy et al., 2023). However, our experimental
observation shown in Figure 1c does not match it, as 65.6% of the crystals are distributed in narrow channels.

The preceding analysis of individual and collective crystal growth reveals that vapor limited kinetics govern
hydrate distribution: narrow channels not only offer higher specific surface areas for nucleation but also impose
shorter vapor diffusion paths, accelerating local water vapor transport. In addition, due to the presence of water
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Figure 4. Difference in phase distribution between wide and narrow channels. (a) Diagram of the mechanism of liquid self-
flow effect. (b) Variation of crystal saturation with time. Crystal saturation refers to the volume fraction of pore space
occupied by crystals in the channel.

film and corner flow in hydrophilic porous media (Figure 4a), water can dynamically redistribute between wider
and narrower channels, that further secures the water supply in narrow channel (Lebeau & Konrad, 2010;
Tokunaga, 2009; Wu et al., 2020).

As a result, crystal growth concentrates within low-permeability paths (Figure 4b), further constricting narrow
paths while leaving wider paths largely unaltered. This selective pore clogging remodels the pore space, and may
modify the stress chain (Li et al., 2023; Liu et al., 2020; Zhang et al., 2020), that result in major transport and
mechanical consequences at larger scales.

Nevertheless, as wider channels have a lower minimum free energy, we do not exclude the possibility that hydrate
would slowly ripen and re-concentrate into wider paths, over geological time scale. This observation echoes field
observation that hydrates always form in low-permeability region and migrates afterward (Bagherzadeh
etal., 2011; Bai et al., 2024; Ge et al., 2019), although classic rationalization emphasizes the enrichment of carbon
source in low-permeability region.

3.5. Explosive Nucleation and Inter-Pocket Nucleation Propagation

With sufficient water supply, a dominant crystal penetrates the gas phase and touches the water pocket. It sur-
prisingly induces explosive nucleation at the gas-water interface, that further evolves into hydrate cluster covering
the whole water pocket surface (Figure 5a). Remarkably, this contact-induced hydrate-covering occurs within
1 min, that is much faster than diffusion-driven crystal growth discussed above.

We attribute this explosive nucleation after merging of high-energy crystal facet into water pocket to a few
synergistic mechanisms:

1. Jump-up of water vapor pressure. When the high-energy face is still exposed to the gas phase, it behaves as a
water vapor sink and generates a local minimum of water vapor pressure that is below the critical pressure for
nucleation. However, when the crystal surface contacts fluid-fluid interface, the surrounding vapor pressure
accordingly jumps up, that may allow crystallization in nearby region.

2. Formation of heterogeneous crystallization site. The crystal-water-gas contact line acts as a heterogeneous
catalytic site (Figure 5b), reducing the free energy barrier for nucleation and thereby initiate crystallization
covering the water-gas surface (Baek et al., 2020; Bai et al., 2015; Fornea et al., 2009; Shaw et al., 2005; Sun &
Tanaka, 2024).

3. Local enrichment of CO, before contacting. To maintain pressure equilibrium during the slow process, local
unsaturated water vapor pressure near the growing face of the crystal results in local enrichment of CO,.
Therefore, when the crystal tip is close to the water pocket surface, it results in higher solubility of CO, in the
water pocket, which is then released after crystal-water contact and contribute to nucleation.

We note that this explosive nucleation does not only have local consequences. It allows crystal formation to
propagate among topologically discrete residual liquid pockets. It therefore provides an efficient route to spread

LIU ET AL.

6 of 10

5UO1T SUOWILIOYD) BAIRR.ID 3|ged|dde ay) Aq pausenob afe sajoie YO ‘3N JO S3|NJ J0j AreiqiauluQ A8|1IAA UO (SUORIPUOD-PUR-SWIBYWO0D A3 | 1M AReiq 1 BUUO//SANY) SUOIIPUOD pUe SWB | 8Y} 88S *[GZ02Z/TT/S0] Uo ARiqiTauluQ A1 euiyDaueIyooD AQ TOESTT 195202/620T 0T/I0p/wod A8 im AriqiputjuosgndnBe;/sdny wouy pepeojumoq ‘T2 ‘20z ‘Z008v76T



Y ad [ |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Geophysical Research Letters 10.1029/2025GL118361

3 / Q &
b
= o : :
i o o
Contact of | _
; crystaland | Ml Explosive
<. - water | » Nucleating point | growth

. M > Oversaturated |

8
solol LR T

46.75h  46.92h 4693 h 48 h

7 Gas (CO,) O Water @ Grain @ Hydrate @ Wall Water Hydrate l Crystal

10h
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growth. (c) Continuous nucleation of discontinuous gas-water interface induced by growing crystals.

local crystallization over long distance, breaking through the limitation of water phase poor connectivity
(Figure 5c¢). Growth or movement of crystals in the liquid phase can lead to similar hydrate propagation (Zhang
et al., 2024).

4. Conclusions

In this study, we adopt CO, hydrates as a model system to visualize crystal growth in unsaturated porous media.
We uncover two unique behaviors and rationalize them with experimental and theoretical evidences:

1. Preferential formation of crystals in narrow channels and directional growth of local dominate crystal
acceleratingly toward a nearby water pocket, that efficiently block the low-permeability region and reshape the
pore space morphology and stress chain.

2. Explosive nucleation that rapidly covers the water pocket surface, which provides a route for nucleation
propagation over long distance among discrete residual water pockets.

These discoveries advance the fundamental understanding of hydrate nucleation and growth in confined envi-
ronments, with wide-ranging engineering implications. In the context of CO, sequestration, our findings offer
insights into the hydrate-based trapping method by elucidating how hydrate growth patterns evolve within pore
networks. This knowledge can aid in predicting and controlling the location, growth rate, and long-term stability
of CO, hydrate deposits. These findings are also relevant to natural gas hydrate production by improving pre-
dictions of hydrate distribution, saturation, and growth behavior. The revealed mechanisms can be generated into
broader cases of crystallization in unsaturated media, where key components for crystal formation mainly
distribute in distinct phases.
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